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ABSTRACT 
In this paper, a parametric Co-ordinate Rotation Digital Computer (CORDIC) algorithm is presented, simulating 

fixed point arithmetic (sine, cosine, and arctangent) trigonometric functions evaluation. The Important design 

options for hardware implementation include iterative, unrolled and unrolled pipelined architectures of the 

CORDIC module. The design uses the VHDL ’93 backwards-compatible version of the fixed point package, as 

defined according to the verilog 2008 standard. Hardware performance analysis results are presented in this 

paper for more than 75 circuit variations implemented on a Spartan 3 Xilinx FPGA, each for different parameter 

values of the proposed CORDIC module. A maximum 47% increase of speed and 57% area reduction are 

accomplished, in comparison with other designs. 

In our simulation design we are using circular co-ordinate system for producing digital trigonometric functions 

and these are calculated in the two main modes in CORDIC algorithm which are rotation mode and vectoring 

mode. 

Keywords -Coordinate Rotation Digital Computer (CORDIC), Cosine/Sine, Recursive Architecture, XILINX. 

 

I. INTRODUCTION 
Trigonometric functions are widely used in                               

almost every application and there are many 

algorithms for producing digital trigonometric 

functions. CORDIC algorithm is capable of 

generating digital trigonometric functions by shifting 

and adding procedure. The abbreviation for CORDIC 

is CO-ordinate Rotation Digital Computer. Here the 

computation of trigonometric functions can be done 

in digital binary format by performing rotation of 

vectors in co-ordinate axis. The basic idea is 

embedding of elementary function evaluation as a 

generalized rotation operation and then the rotation 

operation is decomposed into successive basic 

rotations and then these basic rotations is 

implemented by using shift and add operations. This 

trigonometric iteration based approach relies on 

vector rotations for performing successive mapping 

between polar and rectangular co-ordinates. Although 

not a LUT based strategy, the CORDIC still relies on 

predetermined phase, amplitude and frequency values 

for calculating points on a sine wave. The particular 

architecture hereby presented generates the phase of 

the sine by self on enable and performs the CORDIC 

vector rotation in order to produce sine wave values 

at the rate of 4096 samples per cycle. The 

implementation of DSWG (Digital sinusoidal wave 

generation) was partitioned into two main blocks: a 

Sine magnitude generator (SMG) block and a 

CORDIC logic processor (CLP) block. The SMG 

produces the phase increments which drives the CLP, 

while performing replication in order to obtain the 

complete cycle of sine wave. Meanwhile, the CLP 

block performs the vector rotation and generates the 

sine magnitude. The CORDIC algorithm involves 

rotation of a vector on the XY-plane in circular, 

linear and hyperbolic coordinate systems depending 

on the function to be evaluated. CORDIC algorithm 

can be used for computing wide range of functions 

like trigonometric, logarithmic, hyperbolic and linear 

functions. CORDIC algorithm can be implemented in 

two modes, Rotation mode and Vectoring mode.. 

.       

II. Basic equations of CORDIC 

algorithm 
All the trigonometric functions can be 

computed or derived from functions using vector 

rotations. Vector rotation can also be used for polar 

to rectangular and rectangular to polar conversions, 

for vector magnitude and as a building block in 

certain transforms such as DFT and DCT. The 

CORDIC algorithm provides an iterative method of 
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performing vector rotations by arbitrary angles using 

only shift and add.  

If a vector V with coordinates (x, y) is 

rotated through an angle  then a new vector V' can 

be obtained with coordinates (x', y')         where x' and 

y' can be obtained using x, y and by the following 

method. 

              

 

The algorithm, credited by Volder, is 

derived from the general rotation transform: 

                                   (2) 

       

Which rotates a vector in a Cartesian plane by an 

angle .  

 
Figure1: Rotation of a vector V by an angle   

 

Let’s find how the above equations came 

into picture. As shown in the figure1, a vector V (x, y) 

can be resolved in two parts along the x - axis and y –

axis as rcosand rsinrespectively. Figure 2 

illustrates the rotation of a vector V(x,y) by an 

angle . 

 
Figure 2: Vector V with magnitude r and phase  

i.e.,   x= r cosy= r sin 

 

Similarly from figure 2 it can be seen that 

vector V and V ' can be resolved into two parts. Let V 

has its magnitude and phase as r and respectively 

and V ' has its magnitude and phase as r and ' where 

V ' came into picture after anticlockwise rotation of 

vector V by an angle . From figure 2.1 it can be 

observed:
  

   then   

 

 

 
                            (3) 

 

Using the figure 2  OX ' can be represented as: 

 

           (4) 

 

Similarly,        

 

OY’                         (5) 

 

The vector V ' in the clockwise direction 

rotating the vector V by the angle and the equations 

obtain in this case be  

                                       (6)                            

                                       (7) 

 

The above equations can be represented in the matrix 

form as 

                                 (8) 

 

The individual equations for x. and y' can be rewritten 

as: 

                                      (9) 

                        (10) 

 

Volder observed that by factoring out a 

cosfrom both sides, resulting equation be in terms 

of the tangent of the angle, the angle of which we 

want to find the sin and cos. Next if it is assumed that 

the angle  is being an aggregate of small angles and 

composite angles is chosen such that their tangents 

are all inverse powers of two, then this equation can 

be rewritten as an iterative formula. 

    

            

z´=z , here is the angle of rotation (sign is 

showing the direction of rotation) and z is the 

argument. For the ease of calculation here only 

rotation in anticlockwise direction is observed first. 

                          (11) 

             (12) 

The multiplication by the tangent term can be 

avoided if the rotation angles and therefore tan () 

are restricted so that tan ()  In digital 

hardware this denotes a simple shift operation. 

Furthermore, if those rotations are performed 

iteratively and in both directions every value of 

tan() is representable. With  the 

cosine term could also be simplified and since cos() 
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cos() it is a constant for a fixed number of 

iterations. This iterative rotation can now be 

expressed as: 

]                           (13)  

]         (14) 

 Where, i denotes the number of rotations required to 

reach the required angle of the required vector, 

 and  The product of 

the  represents the so called K factor: 

             

          (15) 

and  is the angle of rotation for n times 

 

TABLE 1: For 8-bit CORDIC hardware 

 
 is the gain and it’s value changes as the number of 

iteration increases. For 8-bit hardware CORDIC 

approximation method the value of  is given as 

 

 

 

 

                                      (16) 

From the above table it can be seen that 

precision up to 0.4469
o
 is possible for 8-bit CORDIC 

hardware. These are stored in the ROM of the 

hardware of the CORDIC hardware as the look up 

table. Now by taking an example of balance it can be 

understood that how the CORDIC algorithm works. 

 

B. Basic CORDIC iterations 

To simplify each rotation, picking (angle 

of rotation in ith iteration) such that  .  

is such that it has value +1 or -1 depending upon the 

rotation  i.e .  {+1,1}.Then 

                          (17) 

                        (18) 

                                     (19) 

 

The computation of  or  requires an 

i-bit right shift and an add/subtract. If the 

function  is pre-computed and stored in 

table (Table 2) for different values of i, a single 

add/subtract sufficient to compute . Each 

CORDIC iteration thus involves two shifts, a table 

lookup and three additions. If the rotation is done by 

the same set of angles (with + or signs), then the 

expansion factor K, is a constant, and can be 

precomputed. For example to rotate by 30 degrees, 

the following sequence of angles be followed that 

add up to degree. 

30.0  45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 -0.9 + 0.4 

- 0.2 + 0.1 =30.1 

 

In effect, what actually happens in CORDIC 

is that z is initialized to 30 degree and then, in each 

step, the sign of the next rotation angle is selected to 

try to change the sign of z; that is, =  is 

chosen, where the sign function is defined to be -1 or 

1 depending on whether the argument is negative or 

non-negative. 

 

TABLE 2: Approximate value of the 

function ), in degree, for  

 
      

In CORDIC terminology the preceding 

selection rule for , which makes z converge to zero, 

is known as rotation mode.  

 

III. Modes of operation 
The CORDIC rotator is normally operated in 

one of two modes. The first called rotation by Volder 

rotates the input vector by a specified angle. The 

second mode, called vectoring, rotates the input 

vector to the x-axis while recording the angle 

required to make that rotation i.e. in the first mode 

the rotator is aware of the angle and in the second 

mode the rotator will find the angle to which the 
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vector needs to rotate to get into the same alignment 

of the given vector.  

 

 

3.1. Rotating Mode 

In rotation mode angle accumulator is 

initialized with the desired rotation angle. The 

rotation decision at each iteration is made to diminish 

the magnitude of the residual angle in the angle 

accumulator. The decision at each iteration is 

therefore based on the sign of the residual angle after 

each step. Naturally, if the input angle is already 

expressed in the binary arctangent base, the angle 

accumulator may be eliminated. For rotation mode 

the CORDIC equations are: 

         (20) 

                        (21) 

                        (22) 

  , 

                   

After m iteration in rotation mode, when z 

(m) is sufficiently close to zero. we have , 

and the CORDIC equations become:  

 

                                   (23) 

           (24) 

Choose {-1, 1} such that z 0 

The constant K in the preceding equation is 

k = 1.646760258121. Thus, to compute cos z and sin 

z, one can start with x = 1/K = 0.607252935... and y 

= 0.Then, as  tends to 0 with CORDIC iterations in 

rotation mode,  and  converge to cos z and sin 

z, respectively. Once sin z and cos z are known, tan z 

can be through necessary division. 

 

TABLE 3:Choosing the signs of the rotation angles 

to force z to zero 

 

 
Figure 3: First three of 10 iterations leading from 

( ) to ( ) in rotating by  

 

For k bits of precision in the resulting 

trigonometric functions, k CORDIC iterations are 

needed. The reason is that for large i it can be 

approximated that .Hence, for i > k, 

the change in the z will be less than U.L.P (Unit in 

the Last Place). 

In the rotation mode, convergence of z to 

zero is possible because each angle in table 2.3 is 

more than half the previous angle or, equivalently, 

each angle is less than the sum of the entire angle 

following it. The domain of convergence is -99.7 < 

z<99.7, where99.7 is the sum of all the angles in table 

2.3. Fortunately, this range includes angle from -90 to 

+90, or [ in radians. 

 

3.2. Vectoring Mode 

In the Vectoring mode, the CORDIC rotator 

rotates the input vector through whatever angle is 

necessary to align the result vector with the x-axis. 

The result of the Vectoring operation is a rotation 

angle and the scaled magnitude of the original vector 

(the x component of the result). The vectoring 

function works by seeking to minimize the y 

component of the residual vector at each rotation. 

The sign of the residual y component is used to 

determine which direction to rotate next. If the angle 

accumulator is initialized with zero, it will contain 

the traversed angle at the end of the iterations. In 

vectoring mode, the CORDIC equations are: 

                                                                                    

                                          

      

  ,       

    

After m iterations in vectoring mode , 

this means that: 
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        (25) 

       

                                     (26) 

The CORDIC equations thus become: 

 

                           (27) 

                                             (28) 

Choose {1, 1} such that y0. 

 

IV. Sine and cosine using CORDIC 
The rotational mode CORDIC operation can 

simultaneously compute the sine and cosine of the 

input angle. Setting the y component of the input 

vector to zero reduces the rotation mode result to: 

                                                    (29) 

                                                     (30) 

   

The rotation algorithm has a gain  of 

approximately 1.647. The exact gain depends on the 

number of iterations and obeys the relation 

                                            (31) 

                                                                                                                     

        By setting  the rotation produces 

unscaled sine and cosine of the angle argument  

Very often, the sine and cosine values modulate a 

magnitude value. Using other techniques (e.g. a look 

up table) requires a pair of multipliers to obtain the 

modulation. The CORDIC technique perform the 

multiply as a part of the rotation operation and 

therefore eliminates the need of explicit multipliers. 

The output of the CORDIC rotator is scaled by the 

rotator gain. If the gain is not acceptable, a single 

multiply by the reciprocal of the gain constant placed 

before the CORDIC rotator will yield the unscaled 

results. It is worth noting that the hardware 

complexity of the CORDIC rotator is approximately 

equal to the single multiplier with the same size. 

 

V. GENERALIZED CORDIC 
The basic CORDIC method can be 

generalized to provide the more powerful tool for 

function evaluation. Generalized CORDIC is defined 

as follows: 

                                            (32) 

                                               (33)                                

                                                    (34) 

Noting that the only difference with basic 

CORDIC is the introduction of the parameter in the 

equation for x and redefinition of . The parameter 

can assume one of the three values: 

 

  for circular rotation (Basic CORDIC) 

  

  for linear rotation  

  for hyperbolic rotation  

 

VI. SCALING, QUANTIZATION AND 

ACCURACY ISSUES 
Scaling is a necessary operation associated 

with the implementation of CORDIC algorithm. 

Scaling in CORDIC could be of two types: 1) 

constant factor scaling and 2) variable factor scaling. 

In case of variable factor scaling the scale-factor 

changes with the rotation angle. It arises mainly 

because some of the iterations of conventional 

CORDIC are ignored (and that varies with the angle 

of rotation), as in the case of higher-radix CORDIC 

and most of the optimized CORDIC algorithms. The 

techniques for scaling compensation for each such 

algorithm have been studied extensively for 

minimizing the scaling overhead. In case of 

conventional CORDIC,  after sufficiently large 

number of iterations, the scale-factor K converges to 

1.6467605, which leads to constant factor scaling 

since the scale factor remains the same for all the 

angle of rotations. Constant factor scaling could be 

efficiently implemented in a dedicated scaling unit 

designed by canonical signed digit (CSD)-based 

technique and common sub-expression elimination 

(CSE) approach. When the sum of the output of more 

than one independent CORDIC operations are to be 

evaluated, one can perform only one scaling of the 

output sum in the case of constant factor scaling. In 

the following subsections, we briefly discuss some 

interesting developments on implementation of on-

line scaling and realization of scaling-free CORDIC. 

Besides, we outline here the sources of error that may 

arise in a CORDIC design and their impact on 

implementation. 

CORDIC technique is basically applied for 

rotation of a vector in circular, hyperbolic or linear 

coordinate systems, which in turn could also be used 

for generation of sinusoidal waveform, multiplication 

and division operations, and evaluation of angle of 

rotation, trigonometric functions, logarithms, 

Exponentials and square root , Table IV shows Some 

elementary functions and operations that can be 

directly implemented by CORDIC. The table also 

indicates whether the coordinate system is circular 

(CC), linear (LC), or hyperbolic (HC), and whether 

the CORDIC operates in rotation mode (RM) or 

vectoring mode (VM), the initialization of the 

CORDIC and the necessary pre- or post-processing 

step to perform the operation. The scale factors are, 

however, obviated in Table IV for simplicity of 

presentation. In this Section, we discuss how 



Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 3), January 2014, pp.307-314 

 

 
www.ijera.com                                                                                                                              312 | P a g e  

CORDIC is used for some basic matrix problems like 

QR decomposition and singular-value decomposition. 

Moreover, we make a brief presentation on 

the applications of CORDIC to signal and image 

processing, digital communication, robotics and 3-D 

graphics. The hybrid decomposition could be used 

for reducing the latency by ROM-based realization of 

coarse operation. This can also be used for reducing 

the hardware complexity of fine rotation phase since 

there is no need to find the direction of micro 

rotation. Several options are however possible for the 

implementation of these two stages. A form of hybrid 

CORDIC is suggested for very-high precision 

CORDIC rotation where the ROM size is reduced to 

nearly bits. The coarse rotations could be 

implemented as conventional CORDIC through shift-

add operations of micro-rotations if the latency is 

tolerable. 

 

VII. CORDIC ARCHITECTURES 
CORDIC computation is inherently 

sequential due to two main bottlenecks firstly the 

micro-rotation for any iteration is performed on the 

intermediate vector computed by the previous 

iteration and secondly the (i+1)
th

 iteration could be 

started only after the completion of the i
th

 iteration, 

since the value of which is required to start the 

(i+1)th iteration could be known only after the 

completion of the ith iteration. To alleviate the 

second bottleneck some attempts have been made for 

evaluation of values corresponding to small micro-

rotation angles . However, the CORDIC iterations 

could not still be performed in parallel due to the first 

bottleneck. A partial parallelization has been realized 

in  by combining a pair of conventional CORDIC 

iterations into a single merged iteration which 

provides better area-delay efficiency. But the 

accuracy is slightly affected by such merging and 

cannot be extended to a higher number of 

conventional CORDIC iterations since the induced 

error becomes unacceptable . Parallel realization of 

CORDIC iterations to handle the first bottleneck by 

direct unfolding of micro-rotation is possible, but that 

would result in increase in computational complexity 

and the advantage of simplicity of CORDIC 

algorithm gets degraded . Although no popular 

architectures are known to us for fully parallel 

implementation of CORDIC, different forms of 

pipelined implementation of CORDIC have however 

been proposed for improving the computational 

throughput .To handle latency bottlenecks, various 

architectures have been developed and reported in 

this review. Most of the well-known architectures 

could be grouped under bit parallel iterative 

CORDIC, bit parallel unrolled CORDIC , bit serial 

iterative CORDIC and pipelined CORDIC 

architecture which we discuss briefly in the following 

subsections.  

 

8.1. Bit Parallel Iterative CORDIC Architecture 

The vector Rotation CORDIC structure is 

represented by the schematics in Figure. 3. Each 

branch consists of an adder-subtractor combination, a 

shift unit and a register for buffering the output. At 

the beginning of a calculation initial values are fed 

into the register by the multiplexer where the MSB of 

the stored value in the z-branch determines the 

operation mode for the adder-subtractor. Signals in 

the x and y branch pass the shift units and are then 

added to or subtracted from the unshifted signal in 

the opposite path. The z branch arithmetically 

combines the registers values with the values taken 

from a lookup table (LUT) whose address is changed 

accordingly to the number of iteration. For n 

iterations the output is mapped back to the registers 

before initial values are fed in again and the final sine 

value can be accessed at the output. A simple finite-

state machine is needed to control the multiplexers, 

the shift distance and the addressing of the constant 

values.  

When implemented in an FPGA the initial 

values for the vector coordinates as well as the 

constant values in the LUT can be hardwired in a 

word wide manner. The adder and the subtractor 

component are carried out separately and a 

multiplexer controlled by the sign of the angle 

accumulator distinguishes between addition and 

subtraction by routing the signals as required. The 

shift operations as implemented change the shift 

distance with the number of iterations but those 

require a high fan in and reduce the maximum speed 

for the application. In addition the output rate is also 

limited by the fact that operations are performed 

iteratively and therefore the maximum output rate 

equals 1/n times the clock rate. 

 
Figure 4: Iterative cordic 

               

8.2. Parallel Unrolled CORDIC Architecture 

Instead of buffering the output of one 

iteration and using the same resources again, one 

could simply cascade the iterative CORDIC, which 

means rebuilding the basic CORDIC structure for 

each iteration. Consequently, the output of one stage 

is the input of the next one, as shown in Figure. 4, 
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and in the face of separate stages two simplifications 

become possible. 

 
Figure 5:  Unrolled CORDIC 

 

First, the shift operations for each step can 

be performed by wiring the connections between 

stages appropriately. Second, there is no need for 

changing constant values and those can therefore be 

hardwired as well. The purely unrolled design only 

consists of combinatorial components and computes 

one sine value per clock cycle. Input values find their 

path through the architecture on their own and do not 

need to be controlled. As we know, the area in 

FPGAs can be measured in CLBs, each of which 

consist of two lookup tables as well as storage cells 

with additional control components. For the purely 

combinatorial design the CLB's function generators 

perform the add and shift operations and no storage 

cells are used. This means registers could be inserted 

easily without significantly increasing the area. 

Pipelining ads some latency, of course, but the 

application needs to output values at 48 kHz and the 

latency for 14 iterations equals 312.5 which are 

known to be imperceptible. However, inserting 

registers between stages would also reduce the 

maximum path delays and correspondingly a higher 

maximum speed can be achieved. 

 

C. Bit Serial Iterative CORDIC Architecture 

Both, the unrolled and the iterative bit-

parallel designs, show disadvantages in terms of 

complexity and path delays going along with the 

large number of cross connections between single 

stages. To reduce this complexity one could change 

the design into a completely bit-serial iterative 

architecture. Bit-serial means only one bit is 

processed at a time and hence the cross connections 

become one bit-wide data paths. Clearly, the 

throughput becomes a function of In spite of this the 

output rate can be almost as high as achieved with the 

unrolled design. The reason is the structural 

simplicity of a bit-serial design and the 

correspondingly high clock rate achievable. Figure. 5 

shows the basic architecture of the bit serial CORDIC 

processor. 

 
Figure 6: Bit serial CORDIC 

 

Since the CORDIC iterations are identical, it 

is very much convenient to map them into pipelined 

architectures. The main emphasis in efficient 

pipelined implementation lies with the minimization 

of the critical path. The earliest pipelined architecture 

that we find was suggested in 1984. Pipelined 

CORDIC circuits have been used thereafter for high-

throughput implementation of sinusoidal wave 

generation, fixed and adaptive filters, discrete 

orthogonal transforms and other signal processing 

applications. 

 

VIII. Simulation results 
Using Xilinx 12.1 tool sine and cosine 

signals were simulated and the results were plotted. 

Hardware usage and complexity were less yet giving  

a high throughput and accuracy. 

 
Figure 7 :simulation result 

 

IX. Conclusion 
CORDIC algorithm can be implemented by 

using simple hardware through repeated shift-add 

operations. This feature makes it attractive for a wide 
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variety of applications. Moreover, its applications in 

several diverse areas including signal processing, 

image processing, communication, robotics and 

graphics apart from general scientific and technical 

computations have been explored. In the last half 

century, several algorithms and architectures have 

been developed to speed up the CORDIC algorithm 

by reducing its iteration counts and through its 

pipelined implementation. 
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