
Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 307 | P a g e

Simulation of Trigonometric Signals Using Area-Time Efficient

Algorithm

Siva Kumar K
1
, Subramanyam M

2
,Chaitanya Kumar G

3
, Sai Lakshmi K

4
,

Prasanna Kumar K
5

1
(Department of ECE, LENDI institute of engg and tech, vizianagaram, india)

2
 (Department of ECE, LENDI institute of engg and tech,vizianagaram,india)

3
(Department of ECE, LENDI institute of engg and tech, vizianagaram, india)

4
(Department of ECE, LENDI institute of engineering and technology, vizianagaram)

5
(Department of ECE, LENDI institute of engineering and technology, vizianagaram)

ABSTRACT
In this paper, a parametric Co-ordinate Rotation Digital Computer (CORDIC) algorithm is presented, simulating

fixed point arithmetic (sine, cosine, and arctangent) trigonometric functions evaluation. The Important design

options for hardware implementation include iterative, unrolled and unrolled pipelined architectures of the

CORDIC module. The design uses the VHDL ’93 backwards-compatible version of the fixed point package, as

defined according to the verilog 2008 standard. Hardware performance analysis results are presented in this

paper for more than 75 circuit variations implemented on a Spartan 3 Xilinx FPGA, each for different parameter

values of the proposed CORDIC module. A maximum 47% increase of speed and 57% area reduction are

accomplished, in comparison with other designs.

In our simulation design we are using circular co-ordinate system for producing digital trigonometric functions

and these are calculated in the two main modes in CORDIC algorithm which are rotation mode and vectoring

mode.

Keywords -Coordinate Rotation Digital Computer (CORDIC), Cosine/Sine, Recursive Architecture, XILINX.

I. INTRODUCTION
Trigonometric functions are widely used in

almost every application and there are many

algorithms for producing digital trigonometric

functions. CORDIC algorithm is capable of

generating digital trigonometric functions by shifting

and adding procedure. The abbreviation for CORDIC

is CO-ordinate Rotation Digital Computer. Here the

computation of trigonometric functions can be done

in digital binary format by performing rotation of

vectors in co-ordinate axis. The basic idea is

embedding of elementary function evaluation as a

generalized rotation operation and then the rotation

operation is decomposed into successive basic

rotations and then these basic rotations is

implemented by using shift and add operations. This

trigonometric iteration based approach relies on

vector rotations for performing successive mapping

between polar and rectangular co-ordinates. Although

not a LUT based strategy, the CORDIC still relies on

predetermined phase, amplitude and frequency values

for calculating points on a sine wave. The particular

architecture hereby presented generates the phase of

the sine by self on enable and performs the CORDIC

vector rotation in order to produce sine wave values

at the rate of 4096 samples per cycle. The

implementation of DSWG (Digital sinusoidal wave

generation) was partitioned into two main blocks: a

Sine magnitude generator (SMG) block and a

CORDIC logic processor (CLP) block. The SMG

produces the phase increments which drives the CLP,

while performing replication in order to obtain the

complete cycle of sine wave. Meanwhile, the CLP

block performs the vector rotation and generates the

sine magnitude. The CORDIC algorithm involves

rotation of a vector on the XY-plane in circular,

linear and hyperbolic coordinate systems depending

on the function to be evaluated. CORDIC algorithm

can be used for computing wide range of functions

like trigonometric, logarithmic, hyperbolic and linear

functions. CORDIC algorithm can be implemented in

two modes, Rotation mode and Vectoring mode..

.

II. Basic equations of CORDIC

algorithm
All the trigonometric functions can be

computed or derived from functions using vector

rotations. Vector rotation can also be used for polar

to rectangular and rectangular to polar conversions,

for vector magnitude and as a building block in

certain transforms such as DFT and DCT. The

CORDIC algorithm provides an iterative method of

RESEARCH ARTICLE OPEN ACCESS

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 308 | P a g e

performing vector rotations by arbitrary angles using

only shift and add.

If a vector V with coordinates (x, y) is

rotated through an angle  then a new vector V' can

be obtained with coordinates (x', y') where x' and

y' can be obtained using x, y and by the following

method.

 

The algorithm, credited by Volder, is

derived from the general rotation transform:

 (2)

Which rotates a vector in a Cartesian plane by an

angle .

Figure1: Rotation of a vector V by an angle 

Let’s find how the above equations came

into picture. As shown in the figure1, a vector V (x, y)

can be resolved in two parts along the x - axis and y –

axis as rcosand rsinrespectively. Figure 2

illustrates the rotation of a vector V(x,y) by an

angle .

Figure 2: Vector V with magnitude r and phase 

i.e., x= r cosy= r sin

Similarly from figure 2 it can be seen that

vector V and V ' can be resolved into two parts. Let V

has its magnitude and phase as r and respectively

and V ' has its magnitude and phase as r and ' where

V ' came into picture after anticlockwise rotation of

vector V by an angle . From figure 2.1 it can be

observed:

 then

 (3)

Using the figure 2 OX ' can be represented as:

 (4)

Similarly,

OY’ (5)

The vector V ' in the clockwise direction

rotating the vector V by the angle and the equations

obtain in this case be

 (6)

 (7)

The above equations can be represented in the matrix

form as

 (8)

The individual equations for x. and y' can be rewritten

as:

 (9)

 (10)

Volder observed that by factoring out a

cosfrom both sides, resulting equation be in terms

of the tangent of the angle, the angle of which we

want to find the sin and cos. Next if it is assumed that

the angle is being an aggregate of small angles and

composite angles is chosen such that their tangents

are all inverse powers of two, then this equation can

be rewritten as an iterative formula.

z´=z , here is the angle of rotation (sign is

showing the direction of rotation) and z is the

argument. For the ease of calculation here only

rotation in anticlockwise direction is observed first.

 (11)

 (12)

The multiplication by the tangent term can be

avoided if the rotation angles and therefore tan ()

are restricted so that tan ()  In digital

hardware this denotes a simple shift operation.

Furthermore, if those rotations are performed

iteratively and in both directions every value of

tan() is representable. With  the

cosine term could also be simplified and since cos()

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 309 | P a g e

cos() it is a constant for a fixed number of

iterations. This iterative rotation can now be

expressed as:

] (13)

] (14)

 Where, i denotes the number of rotations required to

reach the required angle of the required vector,

 and The product of

the represents the so called K factor:

 (15)

and is the angle of rotation for n times

TABLE 1: For 8-bit CORDIC hardware

 is the gain and it’s value changes as the number of

iteration increases. For 8-bit hardware CORDIC

approximation method the value of is given as

 (16)

From the above table it can be seen that

precision up to 0.4469
o
 is possible for 8-bit CORDIC

hardware. These are stored in the ROM of the

hardware of the CORDIC hardware as the look up

table. Now by taking an example of balance it can be

understood that how the CORDIC algorithm works.

B. Basic CORDIC iterations

To simplify each rotation, picking (angle

of rotation in ith iteration) such that .

is such that it has value +1 or -1 depending upon the

rotation i.e . {+1,1}.Then

 (17)

 (18)

 (19)

The computation of or requires an

i-bit right shift and an add/subtract. If the

function is pre-computed and stored in

table (Table 2) for different values of i, a single

add/subtract sufficient to compute . Each

CORDIC iteration thus involves two shifts, a table

lookup and three additions. If the rotation is done by

the same set of angles (with + or signs), then the

expansion factor K, is a constant, and can be

precomputed. For example to rotate by 30 degrees,

the following sequence of angles be followed that

add up to degree.

30.0 45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 -0.9 + 0.4

- 0.2 + 0.1 =30.1

In effect, what actually happens in CORDIC

is that z is initialized to 30 degree and then, in each

step, the sign of the next rotation angle is selected to

try to change the sign of z; that is, = is

chosen, where the sign function is defined to be -1 or

1 depending on whether the argument is negative or

non-negative.

TABLE 2: Approximate value of the

function), in degree, for

In CORDIC terminology the preceding

selection rule for , which makes z converge to zero,

is known as rotation mode.

III. Modes of operation
The CORDIC rotator is normally operated in

one of two modes. The first called rotation by Volder

rotates the input vector by a specified angle. The

second mode, called vectoring, rotates the input

vector to the x-axis while recording the angle

required to make that rotation i.e. in the first mode

the rotator is aware of the angle and in the second

mode the rotator will find the angle to which the

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 310 | P a g e

vector needs to rotate to get into the same alignment

of the given vector.

3.1. Rotating Mode

In rotation mode angle accumulator is

initialized with the desired rotation angle. The

rotation decision at each iteration is made to diminish

the magnitude of the residual angle in the angle

accumulator. The decision at each iteration is

therefore based on the sign of the residual angle after

each step. Naturally, if the input angle is already

expressed in the binary arctangent base, the angle

accumulator may be eliminated. For rotation mode

the CORDIC equations are:

 (20)

 (21)

 (22)

 ,

After m iteration in rotation mode, when z

(m) is sufficiently close to zero. we have ,

and the CORDIC equations become:

 (23)

 (24)

Choose {-1, 1} such that z 0

The constant K in the preceding equation is

k = 1.646760258121. Thus, to compute cos z and sin

z, one can start with x = 1/K = 0.607252935... and y

= 0.Then, as tends to 0 with CORDIC iterations in

rotation mode, and converge to cos z and sin

z, respectively. Once sin z and cos z are known, tan z

can be through necessary division.

TABLE 3:Choosing the signs of the rotation angles

to force z to zero

Figure 3: First three of 10 iterations leading from

() to () in rotating by

For k bits of precision in the resulting

trigonometric functions, k CORDIC iterations are

needed. The reason is that for large i it can be

approximated that .Hence, for i > k,

the change in the z will be less than U.L.P (Unit in

the Last Place).

In the rotation mode, convergence of z to

zero is possible because each angle in table 2.3 is

more than half the previous angle or, equivalently,

each angle is less than the sum of the entire angle

following it. The domain of convergence is -99.7 <

z<99.7, where99.7 is the sum of all the angles in table

2.3. Fortunately, this range includes angle from -90 to

+90, or [in radians.

3.2. Vectoring Mode

In the Vectoring mode, the CORDIC rotator

rotates the input vector through whatever angle is

necessary to align the result vector with the x-axis.

The result of the Vectoring operation is a rotation

angle and the scaled magnitude of the original vector

(the x component of the result). The vectoring

function works by seeking to minimize the y

component of the residual vector at each rotation.

The sign of the residual y component is used to

determine which direction to rotate next. If the angle

accumulator is initialized with zero, it will contain

the traversed angle at the end of the iterations. In

vectoring mode, the CORDIC equations are:

 ,

After m iterations in vectoring mode ,

this means that:

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 311 | P a g e

 (25)

 (26)

The CORDIC equations thus become:

 (27)

 (28)

Choose {1, 1} such that y0.

IV. Sine and cosine using CORDIC
The rotational mode CORDIC operation can

simultaneously compute the sine and cosine of the

input angle. Setting the y component of the input

vector to zero reduces the rotation mode result to:

 (29)

 (30)

The rotation algorithm has a gain of

approximately 1.647. The exact gain depends on the

number of iterations and obeys the relation

 (31)

 By setting the rotation produces

unscaled sine and cosine of the angle argument

Very often, the sine and cosine values modulate a

magnitude value. Using other techniques (e.g. a look

up table) requires a pair of multipliers to obtain the

modulation. The CORDIC technique perform the

multiply as a part of the rotation operation and

therefore eliminates the need of explicit multipliers.

The output of the CORDIC rotator is scaled by the

rotator gain. If the gain is not acceptable, a single

multiply by the reciprocal of the gain constant placed

before the CORDIC rotator will yield the unscaled

results. It is worth noting that the hardware

complexity of the CORDIC rotator is approximately

equal to the single multiplier with the same size.

V. GENERALIZED CORDIC
The basic CORDIC method can be

generalized to provide the more powerful tool for

function evaluation. Generalized CORDIC is defined

as follows:

 (32)

 (33)

 (34)

Noting that the only difference with basic

CORDIC is the introduction of the parameter in the

equation for x and redefinition of . The parameter

can assume one of the three values:

 for circular rotation (Basic CORDIC)

 for linear rotation

 for hyperbolic rotation

VI. SCALING, QUANTIZATION AND

ACCURACY ISSUES
Scaling is a necessary operation associated

with the implementation of CORDIC algorithm.

Scaling in CORDIC could be of two types: 1)

constant factor scaling and 2) variable factor scaling.

In case of variable factor scaling the scale-factor

changes with the rotation angle. It arises mainly

because some of the iterations of conventional

CORDIC are ignored (and that varies with the angle

of rotation), as in the case of higher-radix CORDIC

and most of the optimized CORDIC algorithms. The

techniques for scaling compensation for each such

algorithm have been studied extensively for

minimizing the scaling overhead. In case of

conventional CORDIC, after sufficiently large

number of iterations, the scale-factor K converges to

1.6467605, which leads to constant factor scaling

since the scale factor remains the same for all the

angle of rotations. Constant factor scaling could be

efficiently implemented in a dedicated scaling unit

designed by canonical signed digit (CSD)-based

technique and common sub-expression elimination

(CSE) approach. When the sum of the output of more

than one independent CORDIC operations are to be

evaluated, one can perform only one scaling of the

output sum in the case of constant factor scaling. In

the following subsections, we briefly discuss some

interesting developments on implementation of on-

line scaling and realization of scaling-free CORDIC.

Besides, we outline here the sources of error that may

arise in a CORDIC design and their impact on

implementation.

CORDIC technique is basically applied for

rotation of a vector in circular, hyperbolic or linear

coordinate systems, which in turn could also be used

for generation of sinusoidal waveform, multiplication

and division operations, and evaluation of angle of

rotation, trigonometric functions, logarithms,

Exponentials and square root , Table IV shows Some

elementary functions and operations that can be

directly implemented by CORDIC. The table also

indicates whether the coordinate system is circular

(CC), linear (LC), or hyperbolic (HC), and whether

the CORDIC operates in rotation mode (RM) or

vectoring mode (VM), the initialization of the

CORDIC and the necessary pre- or post-processing

step to perform the operation. The scale factors are,

however, obviated in Table IV for simplicity of

presentation. In this Section, we discuss how

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 312 | P a g e

CORDIC is used for some basic matrix problems like

QR decomposition and singular-value decomposition.

Moreover, we make a brief presentation on

the applications of CORDIC to signal and image

processing, digital communication, robotics and 3-D

graphics. The hybrid decomposition could be used

for reducing the latency by ROM-based realization of

coarse operation. This can also be used for reducing

the hardware complexity of fine rotation phase since

there is no need to find the direction of micro

rotation. Several options are however possible for the

implementation of these two stages. A form of hybrid

CORDIC is suggested for very-high precision

CORDIC rotation where the ROM size is reduced to

nearly bits. The coarse rotations could be

implemented as conventional CORDIC through shift-

add operations of micro-rotations if the latency is

tolerable.

VII. CORDIC ARCHITECTURES
CORDIC computation is inherently

sequential due to two main bottlenecks firstly the

micro-rotation for any iteration is performed on the

intermediate vector computed by the previous

iteration and secondly the (i+1)
th

 iteration could be

started only after the completion of the i
th

 iteration,

since the value of which is required to start the

(i+1)th iteration could be known only after the

completion of the ith iteration. To alleviate the

second bottleneck some attempts have been made for

evaluation of values corresponding to small micro-

rotation angles . However, the CORDIC iterations

could not still be performed in parallel due to the first

bottleneck. A partial parallelization has been realized

in by combining a pair of conventional CORDIC

iterations into a single merged iteration which

provides better area-delay efficiency. But the

accuracy is slightly affected by such merging and

cannot be extended to a higher number of

conventional CORDIC iterations since the induced

error becomes unacceptable . Parallel realization of

CORDIC iterations to handle the first bottleneck by

direct unfolding of micro-rotation is possible, but that

would result in increase in computational complexity

and the advantage of simplicity of CORDIC

algorithm gets degraded . Although no popular

architectures are known to us for fully parallel

implementation of CORDIC, different forms of

pipelined implementation of CORDIC have however

been proposed for improving the computational

throughput .To handle latency bottlenecks, various

architectures have been developed and reported in

this review. Most of the well-known architectures

could be grouped under bit parallel iterative

CORDIC, bit parallel unrolled CORDIC , bit serial

iterative CORDIC and pipelined CORDIC

architecture which we discuss briefly in the following

subsections.

8.1. Bit Parallel Iterative CORDIC Architecture

The vector Rotation CORDIC structure is

represented by the schematics in Figure. 3. Each

branch consists of an adder-subtractor combination, a

shift unit and a register for buffering the output. At

the beginning of a calculation initial values are fed

into the register by the multiplexer where the MSB of

the stored value in the z-branch determines the

operation mode for the adder-subtractor. Signals in

the x and y branch pass the shift units and are then

added to or subtracted from the unshifted signal in

the opposite path. The z branch arithmetically

combines the registers values with the values taken

from a lookup table (LUT) whose address is changed

accordingly to the number of iteration. For n

iterations the output is mapped back to the registers

before initial values are fed in again and the final sine

value can be accessed at the output. A simple finite-

state machine is needed to control the multiplexers,

the shift distance and the addressing of the constant

values.

When implemented in an FPGA the initial

values for the vector coordinates as well as the

constant values in the LUT can be hardwired in a

word wide manner. The adder and the subtractor

component are carried out separately and a

multiplexer controlled by the sign of the angle

accumulator distinguishes between addition and

subtraction by routing the signals as required. The

shift operations as implemented change the shift

distance with the number of iterations but those

require a high fan in and reduce the maximum speed

for the application. In addition the output rate is also

limited by the fact that operations are performed

iteratively and therefore the maximum output rate

equals 1/n times the clock rate.

Figure 4: Iterative cordic

8.2. Parallel Unrolled CORDIC Architecture

Instead of buffering the output of one

iteration and using the same resources again, one

could simply cascade the iterative CORDIC, which

means rebuilding the basic CORDIC structure for

each iteration. Consequently, the output of one stage

is the input of the next one, as shown in Figure. 4,

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 313 | P a g e

and in the face of separate stages two simplifications

become possible.

Figure 5: Unrolled CORDIC

First, the shift operations for each step can

be performed by wiring the connections between

stages appropriately. Second, there is no need for

changing constant values and those can therefore be

hardwired as well. The purely unrolled design only

consists of combinatorial components and computes

one sine value per clock cycle. Input values find their

path through the architecture on their own and do not

need to be controlled. As we know, the area in

FPGAs can be measured in CLBs, each of which

consist of two lookup tables as well as storage cells

with additional control components. For the purely

combinatorial design the CLB's function generators

perform the add and shift operations and no storage

cells are used. This means registers could be inserted

easily without significantly increasing the area.

Pipelining ads some latency, of course, but the

application needs to output values at 48 kHz and the

latency for 14 iterations equals 312.5 which are

known to be imperceptible. However, inserting

registers between stages would also reduce the

maximum path delays and correspondingly a higher

maximum speed can be achieved.

C. Bit Serial Iterative CORDIC Architecture

Both, the unrolled and the iterative bit-

parallel designs, show disadvantages in terms of

complexity and path delays going along with the

large number of cross connections between single

stages. To reduce this complexity one could change

the design into a completely bit-serial iterative

architecture. Bit-serial means only one bit is

processed at a time and hence the cross connections

become one bit-wide data paths. Clearly, the

throughput becomes a function of In spite of this the

output rate can be almost as high as achieved with the

unrolled design. The reason is the structural

simplicity of a bit-serial design and the

correspondingly high clock rate achievable. Figure. 5

shows the basic architecture of the bit serial CORDIC

processor.

Figure 6: Bit serial CORDIC

Since the CORDIC iterations are identical, it

is very much convenient to map them into pipelined

architectures. The main emphasis in efficient

pipelined implementation lies with the minimization

of the critical path. The earliest pipelined architecture

that we find was suggested in 1984. Pipelined

CORDIC circuits have been used thereafter for high-

throughput implementation of sinusoidal wave

generation, fixed and adaptive filters, discrete

orthogonal transforms and other signal processing

applications.

VIII. Simulation results
Using Xilinx 12.1 tool sine and cosine

signals were simulated and the results were plotted.

Hardware usage and complexity were less yet giving

a high throughput and accuracy.

Figure 7 :simulation result

IX. Conclusion
CORDIC algorithm can be implemented by

using simple hardware through repeated shift-add

operations. This feature makes it attractive for a wide

Chaitanya Kumar G et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.307-314

www.ijera.com 314 | P a g e

variety of applications. Moreover, its applications in

several diverse areas including signal processing,

image processing, communication, robotics and

graphics apart from general scientific and technical

computations have been explored. In the last half

century, several algorithms and architectures have

been developed to speed up the CORDIC algorithm

by reducing its iteration counts and through its

pipelined implementation.

REFERENCES
[1] J. E. Volder, “The CORDIC trigonometric

computing technique,” IRE Trans. Electron.

Comput., vol. EC-8, pp. 330–334, Sep.

1959.

[2] J. S. Walther, “A unified algorithm for

elementary functions,” in Proceedings of the

38th Spring Joint Computer Conference,

Atlantic City, NJ, 1971, pp.379–385.

[3] K. Maharatna, A. S. Dhar, and S. Banerjee,

“A VLSI array architecture for

realization of DFT, DHT, DCT and DST,”

Signal Process., vol. 81,pp. 1813–1822,

2001.

[4] C.-S. Wu, A.-Y. Wu, and C.-H. Lin, “A

high-performance/low-latency vector

rotational CORDIC architecture based on

extended elementary angle set and trellis-

based searching schemes,” IEEE Trans.

Circuits Syst. II, Analog Digit. Signal

Process.,vol.50,no.9,pp.589–601, Sep.2003.

[5] J. Villalba, T. Lang, and E. L. Zapata,

“Parallel compensation of scale factor for

the CORDIC algorithm,” J. VLSI Signal

Process. Syst., vol.19, no. 3, pp. 227–241,

Aug. 1998.

[6] Y. H. Hu and S. Naganathan, “An angle

recoding method for CORDIC algorithm

implementation,” IEEE Trans. Comput., vol.

42, no. 1, pp.99–102, Jan. 1993.

[7] K. Maharatna, S. Banerjee, E. Grass, M.

Krstic, and A. Troya, “Modified virtually

scaling-free adaptive CORDIC rotator

algorithm and architecture,”IEEE Trans.

Circuits Syst. Video Technol., vol. 11, no.

11,pp. 1463–1474, Nov. 2005.

[8] F. J. Jaime, M. A. Sanchez, J. Hormigo, J.

Villalba, and E. L. Zapata,“Enhanced

scaling-free CORDIC,” IEEE Trans.

Circuits Syst. I, Reg.Papers, vol. 57, no. 7,

pp. 1654–1662, Jul. 2010.

[9] E. Deprettere, P. Dewilde, and R. Udo,

“Pipelined CORDIC architectures for fast

VLSI filtering and array processing,” in

IEEE International Conference on Acoustic,

Speech, Signal Processing, ICASSP’84,

March 1984, volume 9, pp.250–253.

[10] S. Wang and E. E. Swartzlander, “Merged

CORDIC algorithm,” in IEEE International

Symposium on Circuits Systems

(ISCAS’95),1995, volume 3, pp.1988–1991.

